On the Complexity of Real Solving of Bivariate Polynomial Systems
نویسندگان
چکیده
In this paper we present algorithmic and complexity results for polynomial sign evaluation over two real algebraic numbers, and for real solving of bivariate polynomial systems. Our main tool is signed polynomial remainder sequences; we exploit recent advances in univariate root isolation as well as multipoint evaluation techniques.
منابع مشابه
Computations with one and two real algebraic numbers
We present algorithmic and complexity results concerning computations with one and two real algebraic numbers, as well as real solving of univariate polynomials and bivariate polynomial systems with integer coefficients using Sturm-Habicht sequences. Our main results, in the univariate case, concern the problems of real root isolation (Th. 19) and simultaneous inequalities (Cor. 26) and in the ...
متن کاملOn the asymptotic and practical complexity of solving bivariate systems over the reals
This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of ÕB(N ) for the purely projection-based method, and ÕB(N ) for two subresult...
متن کاملParallel computation of real solving bivariate polynomial systems by zero-matching method
We present a new algorithm for solving the real roots of a bivariate polynomial system R 1⁄4 ff ðx; yÞ; gðx; yÞg with a finite number of solutions by using a zero-matching method. The method is based on a lower bound for the bivariate polynomial system when the system is non-zero. Moreover, the multiplicities of the roots of R 1⁄4 0 can be obtained by the associated quotient ring technique and ...
متن کاملFrom Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition
We present an algorithm for isolating the roots of an arbitrary complex polynomial p that also works for polynomials with multiple roots provided that the number k of distinct roots is given as part of the input. It outputs k pairwise disjoint disks each containing one of the distinct roots of p, and its multiplicity. The algorithm uses approximate factorization as a subroutine. In addition, we...
متن کاملITERATIVE METHOD FOR SOLVING TWO-DIMENSIONAL NONLINEAR FUZZY INTEGRAL EQUATIONS USING FUZZY BIVARIATE BLOCK-PULSE FUNCTIONS WITH ERROR ESTIMATION
In this paper, we propose an iterative procedure based on two dimensionalfuzzy block-pulse functions for solving nonlinear fuzzy Fredholm integralequations of the second kind. The error estimation and numerical stabilityof the proposed method are given in terms of supplementary Lipschitz condition.Finally, illustrative examples are included in order to demonstrate the accuracyand convergence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007